145 research outputs found

    Quantum Mechanics on Manifolds Embedded in Euclidean Space

    Get PDF
    Quantum particles confined to surfaces in higher dimensional spaces are acted upon by forces that exist only as a result of the surface geometry and the quantum mechanical nature of the system. The dynamics are particularly rich when confinement is implemented by forces that act normal to the surface. We review this confining potential formalism applied to the confinement of a particle to an arbitrary manifold embedded in a higher dimensional Euclidean space. We devote special attention to the geometrically induced gauge potential that appears in the effective Hamiltonian for motion on the surface. We emphasize that the gauge potential is only present when the space of states describing the degrees of freedom normal to the surface is degenerate. We also distinguish between the effects of the intrinsic and extrinsic geometry on the effective Hamiltonian and provide simple expressions for the induced scalar potential. We discuss examples including the case of a 3-dimensional manifold embedded in a 5-dimensional Euclidean space.Comment: 12 pages, LaTe

    An alternative NMSSM phenomenology with manifest perturbative unification

    Full text link
    Can supersymmetric models with a moderate stop mass be made consistent with the negative Higgs boson searches at LEP, while keeping perturbative unification manifest? The NMSSM achieves this rather easily, but only if extra matter multiplets filling complete SU(5) representations are present at intermediate energies. As a concrete example which makes use of this feature, we give an analytic description of the phenomenology of a constrained NMSSM close to a Peccei-Quinn symmetry point. The related pseudo-Goldstone boson appears in decays of the Higgs bosons and possibly of the lightest neutralino, and itself decays into (b anti-b) and (tau anti-tau).Comment: 19 pages, 13 figures; v2: possibility of pseudo-Goldstone below 2m_b threshold added, version published by JHE

    Amplitudes and Spinor-Helicity in Six Dimensions

    Get PDF
    The spinor-helicity formalism has become an invaluable tool for understanding the S-matrix of massless particles in four dimensions. In this paper we construct a spinor-helicity formalism in six dimensions, and apply it to derive compact expressions for the three, four and five point tree amplitudes of Yang-Mills theory. Using the KLT relations, it is a straightforward process to obtain amplitudes in linearized gravity from these Yang-Mills amplitudes; we demonstrate this by writing down the gravitational three and four point amplitudes. Because there is no conserved helicity in six dimensions, these amplitudes describe the scattering of all possible polarization states (as well as Kaluza-Klein excitations) in four dimensions upon dimensional reduction. We also briefly discuss a convenient formulation of the BCFW recursion relations in higher dimensions.Comment: 26 pages, 2 figures. Minor improvements of the discussio

    Supersymmetry for Fermion Masses

    Full text link
    It is proposed that supersymmetry (SUSY) maybe used to understand fermion mass hierarchies. A family symmetry Z_{3L} is introduced, which is the cyclic symmetry among the three generation SU(2) doublets. SUSY breaks at a high energy scale ~ 10^{11} GeV. The electroweak energy scale ~ 100 GeV is unnaturally small. No additional global symmetry, like the R-parity, is imposed. The Yukawa couplings and R-parity violating couplings all take their natural values which are about (10^0-10^{-2}). Under the family symmetry, only the third generation charged fermions get their masses. This family symmetry is broken in the soft SUSY breaking terms which result in a hierarchical pattern of the fermion masses. It turns out that for the charged leptons, the tau mass is from the Higgs vacuum expectation value (VEV) and the sneutrino VEVs, the muon mass is due to the sneutrino VEVs, and the electron gains its mass due to both Z_{3L} and SUSY breaking. The large neutrino mixing are produced with neutralinos playing the partial role of right-handed neutrinos. |V_{e3}| which is for nu_e-nu_{tau} mixing is expected to be about 0.1. For the quarks, the third generation masses are from the Higgs VEVs, the second generation masses are from quantum corrections, and the down quark mass due to the sneutrino VEVs. It explains m_c/m_s, m_s/m_e, m_d > m_u and so on. Other aspects of the model are discussed.Comment: 25 pages, 3 figures, revtex4; neutrino oscillation and many discussions added, smallness of the electron mass due to supersymmetry pointed out; v3: numerical errors correcte

    The Minimally Tuned Minimal Supersymmetric Standard Model

    Full text link
    The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV.Comment: 38 pages, including 2 appendices, 8 figure

    Supersymmetry and the LHC Inverse Problem

    Full text link
    Given experimental evidence at the LHC for physics beyond the standard model, how can we determine the nature of the underlying theory? We initiate an approach to studying the "inverse map" from the space of LHC signatures to the parameter space of theoretical models within the context of low-energy supersymmetry, using 1808 LHC observables including essentially all those suggested in the literature and a 15 dimensional parametrization of the supersymmetric standard model. We show that the inverse map of a point in signature space consists of a number of isolated islands in parameter space, indicating the existence of "degeneracies"--qualitatively different models with the same LHC signatures. The degeneracies have simple physical characterizations, largely reflecting discrete ambiguities in electroweak-ino spectrum, accompanied by small adjustments for the remaining soft parameters. The number of degeneracies falls in the range 1<d<100, depending on whether or not sleptons are copiously produced in cascade decays. This number is large enough to represent a clear challenge but small enough to encourage looking for new observables that can further break the degeneracies and determine at the LHC most of the SUSY physics we care about. Degeneracies occur because signatures are not independent, and our approach allows testing of any new signature for its independence. Our methods can also be applied to any other theory of physics beyond the standard model, allowing one to study how model footprints differ in signature space and to test ways of distinguishing qualitatively different possibilities for new physics at the LHC.Comment: 55 pages, 30 figure

    Localization of gravity in brane world with arbitrary extra dimensions

    Full text link
    We study the induced 4-dimensional linearized Einstein field equations in an m-dimensional bulk space by means of a confining potential. It is shown that in this approach the mass of graviton is quantized. The cosmological constant problem is also addressed within the context of this approach. We show that the difference between the values of the cosmological constant in particle physics and cosmology stems from our measurements in two different scales, small and large.Comment: 8 pages. arXiv admin note: substantial text overlap with arXiv:gr-qc/0408004, arXiv:gr-qc/0607067, arXiv:0704.1035, arXiv:0707.3558, arXiv:0710.266

    Schwinger-Keldysh Approach to Disordered and Interacting Electron Systems: Derivation of Finkelstein's Renormalization Group Equations

    Full text link
    We develop a dynamical approach based on the Schwinger-Keldysh formalism to derive a field-theoretic description of disordered and interacting electron systems. We calculate within this formalism the perturbative RG equations for interacting electrons expanded around a diffusive Fermi liquid fixed point, as obtained originally by Finkelstein using replicas. The major simplifying feature of this approach, as compared to Finkelstein's is that instead of N→0N \to 0 replicas, we only need to consider N=2 species. We compare the dynamical Schwinger-Keldysh approach and the replica methods, and we present a simple and pedagogical RG procedure to obtain Finkelstein's RG equations.Comment: 22 pages, 14 figure
    • 

    corecore